A307181 a(n) is the first Zagreb index of the Lucas cube Lambda(n).
0, 6, 12, 40, 90, 216, 462, 976, 1980, 3940, 7678, 14736, 27898, 52220, 96780, 177824, 324258, 587304, 1057350, 1893320, 3373692, 5984924, 10574342, 18613920, 32654450, 57106036, 99576972, 173166616, 300385770, 519849720
Offset: 1
Keywords
Examples
a(2) = 6 because the Lucas cube Lambda(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently the first Zagreb index is 1^2 + 1^2 + 2^2 = 6 (or (1 + 2) + (2 + 1) = 6).
Links
- S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
Programs
-
Maple
L:=(1+(1-y)*x + x^2*y^2 + (1-y)*x^3*y-(1-y)^2*x^4*y)/((1-x*y)*(1-x^2*y)-x^3*y): M:=expand(series(L,x=0,40)): T:=(n,k)->coeff(coeff(M,x,n),y,k): Z1:=n->add(T(n,k)*k^2, k=0..n): seq(Z1(n), n=1..35);
Formula
Conjectures from Colin Barker, Mar 28 2019: (Start)
G.f.: 2*x^2*(3 - 3*x + 2*x^2 + 3*x^4 - 2*x^5 - x^6) / (1 - x - x^2)^3.
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6) for n>8.
(End)
Comments