cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A307156 Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,3*j) * binomial(n-k,3*j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, -9, -15, -9, 1, 1, 1, 1, 1, 1, -19, -39, -39, -19, 1, 1, 1, 1, 1, 1, -34, -79, -99, -79, -34, 1, 1, 1, 1, 1, 1, -55, -139, -199, -199, -139, -55, 1, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2019

Keywords

Examples

			Triangle begins:
n\k | 0  1  2   3    4   5  6  7  8
----+-------------------------------
0   | 1;
1   | 1, 1;
2   | 1, 1, 1;
3   | 1, 1, 1,  1;
4   | 1, 1, 1,  1,   1;
5   | 1, 1, 1,  1,   1,  1;
6   | 1, 1, 1,  0,   1,  1, 1;
7   | 1, 1, 1, -3,  -3,  1, 1, 1;
8   | 1, 1, 1, -9, -15, -9, 1, 1, 1;
		

Crossrefs

Row sums give A307089.
T(2*n,n) gives A307158.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j * Binomial[k, 3*j] * Binomial[n - k, 3*j], {j, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 20 2021 *)
Showing 1-1 of 1 results.