A307159 Partial sums of the bi-unitary divisors sum function: Sum_{k=1..n} bsigma(k), where bsigma is A188999.
1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 203, 221, 251, 271, 301, 333, 369, 393, 453, 479, 521, 561, 601, 631, 703, 735, 798, 846, 900, 948, 998, 1036, 1096, 1152, 1242, 1284, 1380, 1424, 1484, 1544, 1616, 1664, 1772, 1822, 1900, 1972, 2042
Offset: 1
Keywords
References
- D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, Alternating sums concerning multiplicative arithmetic functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1, section 4.13.
Programs
-
Mathematica
fun[p_,e_] := If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); Accumulate[Array[bsigma, 60]]
Formula
a(n) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6) (A307160).