cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307160 Decimal expansion of the constant c in the asymptotic formula for the partial sums of the bi-unitary divisors sum function, A307159(k) ~ c*k^2.

Original entry on oeis.org

7, 5, 2, 8, 3, 8, 7, 4, 1, 0, 0, 2, 2, 9, 4, 3, 1, 1, 5, 4, 3, 3, 3, 0, 9, 5, 1, 5, 5, 3, 0, 4, 1, 2, 7, 6, 5, 1, 9, 5, 2, 5, 4, 6, 7, 5, 6, 5, 2, 2, 1, 0, 8, 5, 8, 7, 7, 9, 0, 3, 2, 8, 7, 8, 6, 8, 1, 2, 5, 2, 2, 6, 0, 5, 5, 8, 1, 4, 8, 7, 8, 4, 7, 7, 4, 1, 8, 6, 0, 4, 7, 8, 2, 5, 8, 0, 7, 0, 0, 1, 1, 9, 9, 4, 1, 3
Offset: 0

Views

Author

Amiram Eldar, Mar 27 2019

Keywords

Comments

The asymptotic mean of the bi-unitary abundancy index lim_{n->oo} (1/n) * Sum_{k=1..n} A188999(k)/k = 2*c = 1.505677... - Amiram Eldar, Jun 10 2020

Examples

			0.75283874100229431154333095155304127651952546756522...
		

References

  • D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; nm=1000; c = Rest[CoefficientList[Series[Log[1 - 2*x^3 + x^4 + x^5 - x^6],{x,0,nm}],x] * Range[0, nm]]; RealDigits[(Zeta[2]*Zeta[3]/2) * Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]

Formula

Equals (zeta(2)*zeta(3)/2)* Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6).

Extensions

More terms from Vaclav Kotesovec, May 29 2020