A307212 a(n) is the Narumi-Katayama index of the Lucas cube Lambda(n).
0, 2, 3, 256, 38880, 1289945088, 42855402240000000, 605828739547255327948800000000, 13263549731442762279026688000000000000000000000000000, 1334793240853871268746431553848403294648071618560000000000000000000000000000000000000000000
Offset: 1
Keywords
Examples
a(2) = 2 because the Lucas cube Lambda(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the Narumi-Katayama index is 1*1*2 = 2.
Links
- I. Gutman and M. Ghorbani, Some properties of the Narumi-Katayama index, Applied Mathematics Letters, Vol. 25, No. 10 (2012), 1435-1438.
- S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
Programs
-
Maple
G := (1+(1-y)*x+x^2*y^2+(1-y)*x^3*y-(1-y)^2*x^4*y)/((1-x*y)*(1-x^2*y)-x^3*y): g := expand(series(G, x=0, 40)): T := (n, k) -> coeff(coeff(g, x, n), y, k): a := n -> mul(k^T(n, k), k=0..n): lprint(seq(a(n), n=1..10));
Comments