cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307235 Decimal expansion of sqrt(2) + sqrt((3-3*sqrt(3)+Pi)/3).

Original entry on oeis.org

1, 9, 7, 5, 5, 9, 2, 8, 8, 4, 7, 8, 1, 5, 0, 0, 5, 1, 5, 9, 1, 6, 4, 6, 5, 2, 5, 8, 5, 1, 3, 5, 8, 9, 3, 4, 6, 5, 1, 6, 7, 4, 7, 9, 1, 6, 8, 4, 3, 2, 0, 8, 9, 8, 4, 5, 6, 0, 4, 2, 4, 3, 9, 1, 1, 7, 6, 6, 4, 7, 0, 9, 2, 8, 0, 5, 8, 4, 2, 8, 4, 7, 4, 2, 4, 6, 2, 5, 4, 2, 6, 4, 3, 1, 2, 1, 3
Offset: 1

Views

Author

Zhao Hui Du, Mar 30 2019

Keywords

Comments

This is claimed to be the minimal cut length required to cut a unit square into 4 pieces of equal area after making certain assumptions about the cuts (compare A307234).

Examples

			1.975592884781500515916465258513589346516747916843208984560424391176647...
		

Crossrefs

Cf. A307234.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2) + Sqrt((Pi(R)+3-3*Sqrt(3))/3); // G. C. Greubel, Jul 02 2019
    
  • Mathematica
    RealDigits[Sqrt[2] + Sqrt[(Pi+3-3*Sqrt[3])/3], 10, 100][[1]] (* G. C. Greubel, Jul 02 2019 *)
  • PARI
    default(realprecision, 100); sqrt(2) + sqrt((Pi+3-3*sqrt(3))/3) \\ G. C. Greubel, Jul 02 2019
    
  • Sage
    numerical_approx(sqrt(2) + sqrt((pi+3-3*sqrt(3))/3), digits=100) # G. C. Greubel, Jul 02 2019

Extensions

Terms a(32) onward added by G. C. Greubel, Jul 02 2019
Edited by N. J. A. Sloane, Aug 16 2019