A307237 Decimal expansion of 2 + (-6 + (1+sqrt(3))*Pi)*sqrt(2/(15*(2*Pi-3 +(Pi-3)*sqrt(3)))).
2, 5, 0, 2, 1, 1, 2, 9, 3, 0, 4, 2, 7, 1, 8, 6, 2, 3, 2, 7, 0, 5, 5, 8, 5, 1, 9, 4, 0, 0, 8, 6, 9, 2, 2, 5, 1, 3, 9, 5, 8, 7, 5, 6, 2, 6, 2, 3, 0, 7, 7, 4, 5, 5, 3, 5, 3, 1, 9, 0, 1, 1, 9, 5, 5, 0, 2, 8, 0, 5, 9, 4, 0, 9, 4, 1, 9, 3, 1, 3, 5, 8, 0, 1, 1, 2, 0, 6, 5, 1, 5, 6, 8, 2, 8, 6
Offset: 1
Examples
2.5021129304271862327055851940086922513958756262307745535319011955...
Links
- Simon Cox, Minimal perimeter enclosing N cells of equal area with N no more than 42
- Zhao Hui Du, Picture showing how square is cut into 5 pieces
- M. Gardner, The Mathemagician and Pied Puzzler, Problem H14.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); 2 +(-6 +(1+Sqrt(3))*Pi(R))*Sqrt(2/(15*(2*Pi(R)-3 +(Pi(R)-3)*Sqrt(3)))); // G. C. Greubel, Jul 02 2019
-
Mathematica
RealDigits[2 +(-6 +(1+Sqrt[3])*Pi)*Sqrt[2/(15*(2*Pi -3 +(Pi-3)*Sqrt[3]) )], 10, 100][[1]] (* G. C. Greubel, Jul 02 2019 *)
-
PARI
default(realprecision, 100); 2 +(-6 +(1+sqrt(3))*Pi)*sqrt(2/(15*(2*Pi-3 +(Pi-3)*sqrt(3)))) \\ G. C. Greubel, Jul 02 2019
-
Sage
numerical_approx(2 + (-6 + (1+sqrt(3))*pi)*sqrt(2/(15*(2*pi-3 +(pi-3)*sqrt(3)))), digits=100) # G. C. Greubel, Jul 02 2019
Extensions
Terms a(32) onward added by G. C. Greubel, Jul 02 2019
Edited by N. J. A. Sloane, Aug 16 2019
Comments