A307238 This is claimed to be the minimal cut length required to cut a unit circle into 4 pieces of equal area after making certain assumptions about the cuts (compare A307234).
3, 9, 4, 5, 7, 0, 2, 9, 6, 7, 2, 6, 7, 1, 8, 5, 7, 1, 3, 8, 4, 2, 8, 9, 9, 5, 5, 2, 1, 1, 1, 7, 9, 9, 1, 8, 8, 8, 7, 4, 8, 3, 5, 4, 0, 1, 0, 7, 4, 7, 4, 1, 5, 2, 4, 2, 6, 8, 1, 6, 9, 6, 7, 1, 3, 1, 8, 7, 4, 3, 2, 9, 8, 3, 8, 1, 6, 2, 0, 0, 8, 4, 8, 7, 8, 5, 1, 4, 7, 7, 3, 8, 6, 0, 2, 1
Offset: 1
Examples
3.945702967267185713842899552111799188874835401074741524...
Links
- Zhao Hui Du, Picture showing the minimum cut length
- J. Hu, A Chinese BBS discussing the problem
Programs
-
Mathematica
p[x_]:=Sin[x]/(Sin[Pi/3]+Sin[Pi/3-x]); q[x_]:=Sin[Pi/3-x]/(Sin[Pi/3]+Sin[Pi/3-x]); R[x_]:=q[x]/Tan[x/2]; S[x_]:=(Pi/3 - x -p[x]*Sin[Pi/3 -x] + R[x]^2*(x-Sin[x]))/2; d := FindRoot[S[x] - Pi/8, {x, 0.1, 0.5}, WorkingPrecision -> 150]; RealDigits[2*(p[x] + 2*x*R[x])/.d, 10, 100][[1]] (* G. C. Greubel, Jul 02 2019 *)
-
PARI
default(realprecision, 100); p(t)=sin(t)/(sin(Pi/3)+sin(Pi/3-t)); q(t)=sin(Pi/3-t)/(sin(Pi/3)+sin(Pi/3-t)); R(t)=q(t)/tan(t/2); S(t)=( Pi/3 - t - p(t)*sin(Pi/3-t) + R(t)^2*(t-sin(t)) )/2; d = solve(t=0.1,0.5, S(t)-Pi/8); 2*(p(d)+2*d*R(d))
Extensions
Terms a(32) onward added by G. C. Greubel, Jul 02 2019
Edited by N. J. A. Sloane, Aug 16 2019
Comments