A307244 a(0) = 1; a(n) is the smallest integer k > a(n-1) such that 3^(k-1) == 1 (mod a(n-1)*k).
1, 2, 5, 13, 19, 37, 73, 97, 193, 241, 601, 751, 2251, 3001, 4001, 16001, 96001, 160001, 1120001, 4480001, 13440001, 20160001, 23385601, 29232001, 36540001, 38628001, 115884001, 231768001, 579420001, 1448550001, 1931400001, 2172825001, 6518475001, 22814662501, 53234212501, 425873700001, 1703494800001
Offset: 0
Keywords
Crossrefs
Cf. A306826.
Programs
-
Mathematica
A = {1}; While[Length[A] < 500, a = Last[A]; r = MultiplicativeOrder[3, a]; k = a + r; While[PowerMod[3, k - 1, k a] != 1, k = k + r]; AppendTo[A, k]]; Take[A, 75] (* Emmanuel Vantieghem, Mar 31 2019 *)
Extensions
a(18)-a(29) from Amiram Eldar, Mar 30 2019
More terms from Emmanuel Vantieghem, Mar 31 2019
Comments