A307250 Primes q == 1 (mod 4) such that there is exactly one equivalence class of quaternary quadratic forms of discriminant q not representing 2.
193, 233, 257, 277, 349, 389, 397, 461, 509
Offset: 1
Links
- F. Hirzebruch, Modulflächen und Modulkurven zur symmetrischen Hilbertschen Modulgruppe, Annales scientifiques de l’É.N.S. 4e série, tome 11, no 1 (1978), p. 101-165. See page 135.
- Jürg Kramer, On the linear independence of certain theta-series, Mathematische Annalen 281.2 (1988): 219-228. See page 226.
Programs
-
Sage
bound = 100 P = Primes() p = 3 for i in range(bound): p = P.next(p) if p % 4 == 1: K1. = NumberField(x^2 - p) K2. = NumberField(x^2 + p) K3.
= NumberField(x^2 + 3*p) zeta = K1.zeta_function() h2 = len(K2.class_group()) h3 = len(K3.class_group()) H_plus = 1/2 * zeta(-1) + 1/8 * h2 + 1/6 * h3 H = (H_plus + int((p + 19)/24))/2 if abs(H_plus-H-1)<.01: print(p) # Andy Huchala, May 17 2023
Extensions
Name clarified by Andy Huchala, May 18 2023
Comments