A307303 Triangle T(n, k) read as upwards antidiagonals of array A, where A(n, k) is the number of families (also called classes) of proper solutions of the Pell equation x^2 - D(n)*y^2 = -k, for k >= 1.
1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0
Offset: 1
Examples
The array A(n, k) begins: n, D(n) \k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... ------------------------------------------------------------------- 1, 2: 1 1 0 0 0 0 2 0 0 0 0 0 0 2 0 2, 3: 0 1 1 0 0 0 0 0 0 0 2 0 0 0 0 3, 5: 1 0 0 2 1 0 0 0 0 0 2 0 0 0 0 4, 6: 0 1 0 0 2 1 0 0 0 0 0 0 0 0 2 5, 7: 0 0 2 0 0 2 1 0 0 0 0 0 0 1 0 6, 8: 0 0 0 1 0 0 2 1 0 0 0 0 0 0 0 7, 10: 1 0 0 0 0 2 0 0 2 1 0 0 0 0 2 8, 11: 0 1 0 0 0 0 2 0 0 2 1 0 0 0 0 9, 12: 0 0 1 0 0 0 0 2 0 0 2 1 0 0 0 10, 13: 1 0 2 2 0 0 0 0 2 0 0 4 1 0 0 11, 14: 0 0 0 0 2 0 1 0 0 2 0 0 2 1 0 12, 15: 0 0 0 0 0 1 0 0 0 0 2 0 0 2 1 13, 17: 1 0 0 0 0 0 0 2 0 0 0 0 2 0 0 14, 18: 0 1 0 0 0 0 0 0 2 0 0 0 0 2 0 15, 19: 0 1 2 0 0 0 0 0 0 2 0 0 0 0 4 16, 20: 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 17, 21: 0 0 1 0 2 0 0 0 0 0 0 2 0 0 0 18, 22: 0 1 0 0 0 0 2 0 0 0 0 0 2 0 0 19, 23: 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 20, 24: 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 ------------------------------------------------------------------- The triangle T(n, k) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 .. 1: 1 2: 0 1 3: 1 1 0 4: 0 0 1 0 5: 0 1 0 0 0 6: 0 0 0 2 0 0 7: 1 0 2 0 1 0 2 8: 0 0 0 0 2 0 0 0 9: 0 1 0 1 0 1 0 0 0 10: 1 0 0 0 0 2 0 0 0 0 11: 0 0 1 0 0 0 1 0 0 0 0 12: 0 0 2 0 0 2 2 0 0 0 2 0 13: 1 0 0 2 0 0 0 1 0 0 2 0 0 14: 0 0 0 0 0 0 2 0 0 0 0 0 0 2 15: 0 1 0 0 2 0 0 0 2 0 0 0 0 0 0 16: 0 1 0 0 0 0 0 2 0 1 0 0 0 0 0 0 17: 0 0 2 0 0 1 1 0 0 2 0 0 0 0 0 0 2 18: 0 0 0 0 0 0 0 0 2 0 1 0 0 1 2 0 0 0 19: 0 1 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 20: 0 0 0 0 0 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 ... For this triangle more than the shown columns of the array have been used. ---------------------------------------------------------------------------- A(5, 6) = 2 = T(10, 6) because D(5) = 7, and the Pell form F(5) with disc(F(5)) = 4*7 = 28 representing k = -6 has 2 families (classes) of proper solutions generated from the two positive fundamental positive solutions (x10, y10) = (13, 5) and (x20, y20) = (1, 1). They are obtained from the trivial solutions of the parallel forms [-6, 2, 1] and [-6, 10, -3], respectively.
References
- D. A. Buell, Binary Quadratic Forms, Springer, 1989.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973.
Formula
T(n, k) = A(n-k+1, k) for 1 <= k <= n, with A(n,k) the number of proper (positive) fundamental solutions of the Pell equation x^2 - D(n)*y^2 = -k for k >= 1, with D(n) = A000037(n), for n >= 1. Each such fundamental solution generates a family of proper solutions.
Comments