A307306 Self-composition of the sum of divisors function (A000203).
1, 6, 26, 101, 366, 1294, 4400, 14706, 48362, 157583, 507714, 1621211, 5138804, 16204008, 50867068, 159004142, 494928072, 1534638702, 4743180908, 14622202326, 44978845086, 138074363360, 422979847404, 1293101281551, 3945553307665, 12018461150832, 36556888102402
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..750
- Eric Weisstein's World of Mathematics, Divisor Function
Programs
-
Mathematica
g[x_] := g[x] = Sum[k x^k/(1 - x^k), {k, 1, 27}]; a[n_] := a[n] = SeriesCoefficient[g[g[x]], {x, 0, n}]; Table[a[n], {n, 27}]
Formula
G.f.: g(g(x)), where g(x) = Sum_{k>=1} k*x^k/(1 - x^k) is the g.f. of A000203.