A307308 Self-composition of the Euler totient function (A000010).
1, 2, 6, 15, 42, 106, 280, 702, 1778, 4398, 10910, 26678, 65172, 157656, 380524, 912846, 2185906, 5216588, 12433166, 29564544, 70189672, 166245574, 392909240, 926290066, 2178881218, 5114469170, 11985221654, 28049398284, 65588182636, 153277006212, 358073997608
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..500
- Eric Weisstein's World of Mathematics, Totient Function
Programs
-
Mathematica
g[x_] := g[x] = Sum[MoebiusMu[k] x^k/(1 - x^k)^2, {k, 1, 31}]; a[n_] := a[n] = SeriesCoefficient[g[g[x]], {x, 0, n}]; Table[a[n], {n, 31}]
Formula
G.f.: g(g(x)), where g(x) = Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2 is the g.f. of A000010.