cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307308 Self-composition of the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 6, 15, 42, 106, 280, 702, 1778, 4398, 10910, 26678, 65172, 157656, 380524, 912846, 2185906, 5216588, 12433166, 29564544, 70189672, 166245574, 392909240, 926290066, 2178881218, 5114469170, 11985221654, 28049398284, 65588182636, 153277006212, 358073997608
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 02 2019

Keywords

Crossrefs

Programs

  • Mathematica
    g[x_] := g[x] = Sum[MoebiusMu[k] x^k/(1 - x^k)^2, {k, 1, 31}]; a[n_] := a[n] = SeriesCoefficient[g[g[x]], {x, 0, n}]; Table[a[n], {n, 31}]

Formula

G.f.: g(g(x)), where g(x) = Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2 is the g.f. of A000010.

A307502 Self-convolution of the Dedekind psi function (A001615).

Original entry on oeis.org

0, 1, 6, 17, 36, 64, 108, 172, 240, 340, 444, 612, 744, 980, 1164, 1504, 1704, 2172, 2388, 2964, 3288, 3968, 4272, 5272, 5520, 6624, 7104, 8276, 8640, 10404, 10572, 12480, 13032, 14988, 15300, 18204, 18048, 21004, 21636, 24616, 24648, 29036, 28452, 32768, 33552, 37488
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[nmax = 46; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 - x^k)^2, {k, 1, nmax}]^2, {x, 0, nmax}], x]]
    psi[n_] := psi[n] = Sum[MoebiusMu[n/d]^2 d, {d, Divisors @ n}]; a[n_] := a[n] = Sum[psi[k] psi[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 46}]

Formula

G.f.: (Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2)^2.
a(n) = Sum_{k=1..n-1} A001615(k)*A001615(n-k).
Conjecture: Sum_{k=1..n} a(k) ~ 75 * n^4 / (8 * Pi^4). - Vaclav Kotesovec, Aug 20 2025
Showing 1-2 of 2 results.