A307327 Number of superabundant m in the interval p_k# <= m < p_(k+1)#, where p_i# = A002110(i).
1, 2, 3, 5, 6, 6, 5, 9, 8, 9, 8, 11, 12, 11, 11, 10, 12, 12, 11, 14, 15, 15, 16, 12, 14, 14, 15, 12, 12, 12, 12, 14, 13, 14, 12, 12, 14, 15, 16, 15, 15, 16, 18, 15, 17, 18, 18, 21, 22, 17, 15, 19, 17, 15, 16, 17, 16, 16, 17, 18, 18, 17, 17, 16, 17, 15, 15, 14
Offset: 0
Keywords
Examples
First terms of this sequence and the superabundant numbers within the intervals: n a(n) m such that A002110(n) <= m < A002110(n+1) ------------------------------------------------------- 0 1 1* 1 2 2* 4 2 3 6* 12 24 3 5 36 48 60 120 180 4 6 240 360 720 840 1260 1680 5 6 2520 5040 10080 15120 25200 27720 6 5 55440 110880 166320 277200 332640 ... (Asterisks denote primorials in A004394.)
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..407
- Michael De Vlieger, Graph comparing a(n) in red with A307113(n) in blue
Programs
-
Mathematica
Block[{nn = 8, P, s}, P = Nest[Append[#, #[[-1]] Prime@ Length@ #] &, {1}, nn + 1]; s = Array[DivisorSigma[1, # ]/# &, P[[nn + 1]]]; s = Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]; Table[Count[s, _?(If[! IntegerQ@ #, 1, #] &@ P[[i]] <= # < P[[i + 1]] &)], {i, nn}]]
Comments