A307359 Class number a(n) of indefinite binary quadratic forms with discriminant 4*A000037(n) for n >= 1.
1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 4, 1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 1, 4, 2, 2, 2, 4, 4, 3, 2, 4, 4, 1, 4, 2, 2, 2, 2, 2, 4, 2, 4, 2, 1, 2, 4, 4, 2, 2, 2, 4, 1, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 1, 2, 4, 2, 2, 4, 6, 4, 4, 2, 4, 2, 2, 4, 4, 1, 4, 4, 2, 2, 2, 4, 4, 1, 2, 8, 3, 4, 2, 4, 4, 2
Offset: 1
Keywords
Examples
a(1) = 1 because 4*A000037(1) = 4*2 = 8 = A079896(e(1)) with e(1) = 1 and A087048(1) = 1. a(12) = 4 because the twelfth even number of A079896 is 60 at position e(12) = 22, and A087048(22) = 4. The cycle for discriminant 8 is [[1, 2, -1], [-1, 2, 1]]. The four 2-cycles for discriminant 60 are [[1, 6, -6], [-6, 6, 1]], [[-1, 6, 6], [6, 6, -1]], [[2, 6, -3], [-3, 6, 2]] and [[-2, 6, 3], [3, 6, -2]].
References
- D. A. Buell, Binary Quadratic Forms, Springer, 1989.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
Programs
-
SageMath
def a(n): i, D, S = 1, 4*n + 4*floor(1/2 + sqrt(n)), [] for b in range(1, isqrt(D)+1): if ((D-b^2)%4 != 0): continue for a in Integer((D-b^2)/4).divisors(): if gcd([a, b, (D-b^2)/(4*a)]) > 1: continue Q = BinaryQF(a, b, -(D-b^2)/(4*a)) if all([(not Q.is_equivalent(t)) for t in S]): S.append(Q) return len(S) # Robin Visser, Jun 01 2025
Formula
Extensions
a(40) corrected and more terms from Robin Visser, Jun 01 2025
Comments