A307380 Number of quintic primitive Dirichlet characters modulo n.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0
Offset: 1
Examples
Let w = exp(2*Pi/5). For n = 11, the 4 quintic primitive Dirichlet characters modulo n are: Chi_1 = [0, 1, w, w^3, w^2, w^4, w^4, w^2, w^3, w, 1]; Chi_2 = [0, 1, w^2, w, w^4, w^3, w^3, w^4, w, w^2, 1]; Chi_3 = [0, 1, w^3, w^4, w, w^2, w^2, w, w^4, w^3, 1]; Chi_4 = [0, 1, w^4, w^2, w^3, w, w, w^3, w^2, w^4, 1], so a(11) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65539
Crossrefs
Programs
-
Mathematica
f[5, 2] = 4; f[p_, e_] := If[Mod[p, 5] == 1 && e == 1, 4, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
-
PARI
a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1)), 0))
-
PARI
A307380(n) = sumdiv(n, d, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1))); \\ (Slightly speeding the program above) - Antti Karttunen, Aug 22 2019
-
PARI
A307380(n) = { my(f=factor(n)); prod(i=1, #f~, if(((5==f[i,1])&&(2==f[i,2]))||((1==(f[i,1]%5))&&(1==f[i,2])),4,0)); }; \\ (After the multiplicative formula, much faster) - Antti Karttunen, Aug 22 2019
Formula
Multiplicative with a(p^e) = 4 if p^e = 25 or p == 1 (mod 5) and e = 1, otherwise 0.
Extensions
More terms from Antti Karttunen, Aug 22 2019
Comments