cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307401 G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} k*x^k*A(x)^k/(1 + x^k*A(x)^k).

Original entry on oeis.org

1, 1, 2, 8, 26, 92, 360, 1416, 5698, 23513, 98346, 416418, 1783144, 7704322, 33546344, 147071592, 648636050, 2875822121, 12810531924, 57306505152, 257330920910, 1159517118330, 5241137123470, 23758569938458, 107983949179512, 491985193384077, 2246564114646650
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 92*x^5 + 360*x^6 + 1416*x^7 + 5698*x^8 + 23513*x^9 + 98346*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 27; A[] = 0; Do[A[x] = 1 + Sum[k x^k A[x]^k/(1 + x^k A[x]^k), {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 27; A[] = 0; Do[A[x] = 1 + Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 27; CoefficientList[1/x InverseSeries[Series[x/(1 + Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] x^k, {k, 1, terms}]), {x, 0, terms}], x], x]
    (* Calculation of constants {d, c} : *) {1/r, Sqrt[3*s/(Pi*(3*EllipticTheta[2, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s]^2 + 3*EllipticTheta[3, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]^2 + EllipticTheta[2, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][2, 0, r*s] + EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][3, 0, r*s]))]/r} /. FindRoot[{24*s == 23 + EllipticTheta[2, 0, r*s]^4 + EllipticTheta[3, 0, r*s]^4, r*EllipticTheta[2, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s] + r*EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 6}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120]  (* Vaclav Kotesovec, Sep 27 2023 *)

Formula

G.f. A(x) satisfies: A(x) = (23 + theta_2(x*A(x))^4 + theta_3(x*A(x))^4)/24.
G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} A000593(k)*x^k*A(x)^k.
G.f.: A(x) = (1/x)*Series_Reversion(x/(1 + Sum_{k>=1} A000593(k)*x^k)).
a(n) ~ c * d^n / n^(3/2), where d = 4.83361837854808845493127190842423391826598301272368919050344408629988519... and c = 0.506244425594072156224012562189085656331596921281799036166665... - Vaclav Kotesovec, Sep 27 2023