A307414 Numbers k such that A014285(k) and A007504(k) are coprime.
2, 3, 6, 7, 10, 11, 12, 14, 15, 18, 19, 22, 23, 24, 27, 30, 31, 32, 34, 35, 38, 39, 40, 44, 46, 47, 48, 51, 52, 55, 56, 58, 59, 60, 63, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 92, 94, 95, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 115, 116, 118, 119, 120, 122
Offset: 1
Keywords
Examples
a(3) = 6 is a term because A007504(6) = 41 and A014285(6) = 184 are coprime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # for terms <= N Primes:= map(ithprime, [$1..N]): S1:= ListTools:-PartialSums(Primes): S2:= ListTools:-PartialSums(zip(`*`,Primes, [$1..N])): select(t -> igcd(S1[t],S2[t])=1, [$1..N]);
-
Mathematica
okQ[n_] := With[{pp = Prime[Range[n]]}, CoprimeQ[Total[pp], Total[pp.Range[n]]]]; Select[Range[200], okQ] (* Jean-François Alcover, Dec 05 2023 *)
-
PARI
isok(k) = my(vp=primes(k)); gcd(sum(i=1, k, vp[i]), sum(i=1, k, i*vp[i])) == 1; \\ Michel Marcus, Apr 07 2019
Comments