A307415 Total number of parts in all symmetric m-color cyclic compositions of n (that is, the total number of parts in all achiral cyclic compositions of n where a part with size m can be colored with one of m colors).
1, 4, 10, 26, 53, 116, 215, 434, 766, 1480, 2539, 4776, 8045, 14864, 24722, 45094, 74305, 134236, 219619, 393790, 640646, 1141844, 1849175, 3279696, 5291353, 9346396, 15031450, 26458994, 42438221, 74479940, 119182319, 208629386, 333170830, 581904544, 927617347, 1616924664
Offset: 1
Keywords
Examples
We have a(1) = 1 because we only have one symmetric cyclic composition of n = 1, namely 1_1, which has 1 part. We have a(2) = 4 because we have the following colored achiral cyclic compositions of n = 2: 2_1, 2_2, 1_1 + 1_1; hence, a(2) = 1 + 1 + 2 = 4. We have a(3) = 10 because we have the following colored achiral cyclic compositions of n = 3: 3_1, 3_2, 3_3, 1_1 + 2_1, 1_1 + 2_2, 1_1 + 1_1 + 1_1; hence, a(3) = 1 + 1 + 1 + 2 + 2 + 3 = 10. We have a(4) = 26 because we have the following colored achiral cyclic compositions of n = 4: 4_1, 4_2, 4_3, 4_4, 1_1 + 3_1, 1_1 + 3_2, 1_1 + 3_3, 2_1 + 2_1, 2_1 + 2_2, 2_2 + 2_2, 1_1 + 2_1 + 1_1, 1_1 + 2_2 + 1_1, 1_1 + 1_1 + 1_1 + 1_1; hence, a(4) = 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 4 = 26. We have a(5) = 53 because we have the following colored achiral cyclic compositions of n = 5: (i) With one part: 5_1, 5_2, 5_3, 5_4, 5_5; i.e., a total of 5 parts. (ii) With two parts: 1_1 + 4_1, 1_1 + 4_2, 1_1 + 4_3, 1_1 + 4_4, 2_1 + 3_1, 2_1 + 3_2, 2_1 + 3_3, 2_2 + 3_1, 2_2 + 3_2, 2_2 + 3_3; i.e., a total of 20 parts. (iii) With three parts: 1_1 + 3_1 + 1_1, 1_1 + 3_2 + 1_1, 1_1 + 3_3 + 1_1, 2_1 + 1_1 + 2_1, 2_2 + 1_1 + 2_2; i.e., a total of 15 parts. (iv) With four parts: 1_1 + 1_1 + 2_1 + 1_1, 1_1 + 1_1 + 2_2 + 1_1 (here, the axis of symmetry passes through one of the 1's and through 2); i.e., a total of 8 parts. (v) With five parts: 1_1 + 1_1 + 1_1 + 1_1 + 1_1; i.e., a total of 5 parts. Thus, a(5) = 5 + 20 + 15 + 8 + 5 = 53.
Links
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31(11) (2000), 1421-1427.
- C. G. Bower, Transforms (2).
- Petros Hadjicostas, Generalized colored circular palindromic compositions, Moscow Journal of Combinatorics and Number Theory, 9(2) (2020), 173-186.
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc. S2-7(1) (1909), 263-313.
Formula
a(n) = (n/5) * (11*F(n) + 7*F(n-1)) + (-1)^n * (n/5) * (-4*F(n) + 7*F(n-1)) - (2/5) * (5*F(n+1) + 3*F(n)) - (-1)^n * (2/5) * (3*F(n) - 5*F(n-1)) for n >= 1, where F(n) = A000045(n) is the n-th Fibonacci number.
G.f.: (x^2 - x + 1) * x * (x^2 + 3*x + 1) * (x + 1)^2/((x^2 + x - 1)^2 * (x^2 - x - 1)^2).
Comments