A307429 Triangle read by rows: T(n,k) is the number of permutations of {1..n} at Kendall tau distance k of permutation sigma1 and k+1 Kendall tau distance of permutation sigma2, where sigma1 and sigma2 are at Kendall tau distance 1.
1, 1, 0, 1, 1, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 3, 6, 9, 11, 11, 9, 6, 3, 1, 0, 1, 4, 10, 19, 30, 41, 49, 52, 49, 41, 30, 19, 10, 4, 1, 0, 1, 5, 15, 34, 64, 105, 154, 205, 250, 281, 292, 281, 250, 205, 154, 105, 64, 34, 15, 5, 1, 0
Offset: 1
Examples
Triangle begins: 1; 1, 0; 1, 1, 1, 0; 1, 2, 3, 3, 2, 1, 0; 1, 3, 6, 9, 11, 11, 9, 6, 3, 1, 0; 1, 4, 10, 19, 30, 41, 49, 52, 49, 41, 30, 19, 10, 4, 1, 0;
Links
- María Merino, Table of n, a(n) for n = 1..20875 (rows n = 1..50, flattened)
- I. Unanue, M. Merino, and J. A. Lozano, A Mathematical Analysis of EDAs with Distance-based Exponential Models, Memetic Computing, 14 (2022), 305-334. Also on ResearchGate.
Programs
-
Mathematica
T[n_] := Module[{polcoef, svalues = {}, si, j, k, c}, polcoef = CoefficientList[Series[QFactorial[n, c], {c, 0, n (n - 1)/2}], c]; For[j = 1, j <= Length[polcoef], j++, si = 0; For[k = 1, k <= j, k++, si = si + polcoef[[k]]*(-1)^(j - k)]; AppendTo[svalues, si]]; Return[svalues]]; Catenate[Table[T[n], {n, 1, 7}]]
-
PARI
S(n, k) = my(A=1+x); for(i=1, n, A = 1 + intformal(A - q*subst(A, x, q*x +x^2*O(x^n)))/(1-q)); polcoeff(n!*polcoeff(A, n, x), k, q); \\ A008302 T(n, k) = sum(i=0, k, (-1)^(k-i)*S(n,i)); tabf(nn) = for (n=1, nn, for (k=0, n*(n-1)/2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 10 2019
-
SageMath
from sage.combinat.q_analogues import q_factorial def A307429_row(n): qf = q_factorial(n).list() return [sum((-1)^(k-j)*qf[j] for j in range(k+1)) for k in range(n*(n-1)//2 + 1)] for n in range(1, 7): print(A307429_row(n)) # Peter Luschny, Sep 01 2022
Formula
T(n,k) = Sum_{j=0..k} (-1)^j * S(n,k-j), where S(n,k) = A008302(n,k) is the number of permutations of {1..n} with k inversions.
Comments