A307432 Number T(n,k) of partitions of n into parts whose bitwise AND equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 3, 2, 1, 0, 0, 1, 5, 3, 1, 1, 0, 0, 1, 9, 4, 1, 0, 0, 0, 0, 1, 11, 6, 3, 0, 1, 0, 0, 0, 1, 18, 6, 3, 1, 1, 0, 0, 0, 0, 1, 27, 8, 3, 1, 1, 1, 0, 0, 0, 0, 1, 38, 11, 4, 0, 2, 0, 0, 0, 0, 0, 0, 1, 53, 13, 6, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
T(6,0) = 5: 11112, 1122, 123, 114, 24. T(6,1) = 3: 111111, 1113, 15. T(6,2) = 1: 222. T(6,3) = 1: 33. T(6,6) = 1: 6. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 1, 1, 0, 1; 1, 2, 1, 0, 1; 3, 2, 1, 0, 0, 1; 5, 3, 1, 1, 0, 0, 1; 9, 4, 1, 0, 0, 0, 0, 1; 11, 6, 3, 0, 1, 0, 0, 0, 1; 18, 6, 3, 1, 1, 0, 0, 0, 0, 1; 27, 8, 3, 1, 1, 1, 0, 0, 0, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wikipedia, Bitwise operation
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, x^k, `if`(i<1, 0, b(n, i-1, k)+b(n-i, min(n-i, i), Bits[And](i, k)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))( b(n$2, `if`(n=0, 0, 2^ilog2(2*n)-1))): seq(T(n), n=0..14);