cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307435 Number of partitions of n into parts whose bitwise AND equals 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 5, 9, 11, 18, 27, 38, 53, 75, 102, 137, 178, 238, 313, 406, 528, 677, 865, 1093, 1382, 1742, 2181, 2717, 3377, 4175, 5146, 6320, 7737, 9454, 11516, 13986, 16950, 20473, 24682, 29672, 35631, 42663, 50992, 60807, 72399, 86008, 102027, 120793
Offset: 0

Views

Author

Alois P. Heinz, Apr 08 2019

Keywords

Examples

			a(0) = 1: the empty partition.
a(3) = 1: 21.
a(4) = 1: 211.
a(5) = 3: 2111, 221, 41.
a(6) = 5: 21111, 2211, 321, 411, 42.
a(7) = 9: 211111, 22111, 2221, 3211, 4111, 421, 43, 52, 61.
a(8) = 11: 2111111, 221111, 22211, 32111, 3221, 41111, 4211, 422, 431, 521, 611.
a(9) = 18: 21111111, 2211111, 222111, 22221, 321111, 32211, 3321, 411111, 42111, 4221, 4311, 432, 441, 5211, 522, 6111, 621, 81.
		

Crossrefs

Column k=0 of A307432.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
         `if`(i<1, 0, b(n, i-1, k)+b(n-i, min(n-i, i), Bits[And](i, k))))
        end:
    a:= n-> b(n$2, `if`(n=0, 0, 2^ilog2(2*n)-1)):
    seq(a(n), n=0..50);