A307435 Number of partitions of n into parts whose bitwise AND equals 0.
1, 0, 0, 1, 1, 3, 5, 9, 11, 18, 27, 38, 53, 75, 102, 137, 178, 238, 313, 406, 528, 677, 865, 1093, 1382, 1742, 2181, 2717, 3377, 4175, 5146, 6320, 7737, 9454, 11516, 13986, 16950, 20473, 24682, 29672, 35631, 42663, 50992, 60807, 72399, 86008, 102027, 120793
Offset: 0
Examples
a(0) = 1: the empty partition. a(3) = 1: 21. a(4) = 1: 211. a(5) = 3: 2111, 221, 41. a(6) = 5: 21111, 2211, 321, 411, 42. a(7) = 9: 211111, 22111, 2221, 3211, 4111, 421, 43, 52, 61. a(8) = 11: 2111111, 221111, 22211, 32111, 3221, 41111, 4211, 422, 431, 521, 611. a(9) = 18: 21111111, 2211111, 222111, 22221, 321111, 32211, 3321, 411111, 42111, 4221, 4311, 432, 441, 5211, 522, 6111, 621, 81.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1024
- Wikipedia, Bitwise operation
- Wikipedia, Partition (number theory)
Crossrefs
Column k=0 of A307432.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(i<1, 0, b(n, i-1, k)+b(n-i, min(n-i, i), Bits[And](i, k)))) end: a:= n-> b(n$2, `if`(n=0, 0, 2^ilog2(2*n)-1)): seq(a(n), n=0..50);