A307458 Composites c where an integer b with 1 < b < c exists such that when the k digits in the base-b expansion of c are considered as exponents in an ordered list of primes prime(1), prime(2), ..., prime(k), then Product_{i=1..k} prime(i)^d[i] = c, where d[h] gives the h-th most significant digit in the expansion.
6, 10, 18, 36, 54, 96, 100, 162, 200, 216, 256, 324, 486, 1296, 1458, 2916, 4374, 5832, 13122, 26244, 39366, 46656, 47250, 49000, 65536, 82944, 104976, 118098, 157464, 181500, 236196, 354294, 746496, 1062882, 1492992, 1679616, 1990656, 2125764, 3188646, 3538944
Offset: 1
Examples
The base-4 expansion of 200 is 3020. 2^3 * 3^0 * 5^2 * 7^0 = 200, so 200 is a term of the sequence.
Crossrefs
Cf. A067255.
Programs
-
Mathematica
base[n_] := Block[{e, t=0, m, b=0, s=False, p, x, pp}, pp = PrimePi@ FactorInteger[n][[-1, 1]]; If[2^(pp - 1) > n, 0, e = IntegerExponent[n, Prime@ Range@ pp]; m = Max[e] + 1; p = Total[Reverse[e] x^Range[0, Length[e] - 1]]; While[((p x^t) /. x -> m ) <= n, s = Reduce[p x^t == n && m <= x < n, x, Integers]; If[s === False, t++, b = x /. List[ToRules@ s][[1]]; Break[], t++]]; b]]; Select[Range[4, 10^5, 2], base[#] > 0 &] (* Giovanni Resta, Apr 10 2019 *)
-
PARI
is(n) = for(b=2, n-1, my(d=digits(n, b), k=#d, x=1); while(k > 0, x=x*prime(k)^d[k]; k--); if(x==n, return(1))); 0 for(t=1, oo, if(is(2*t), print1(2*t, ", ")))
Extensions
a(21)-a(40) from Giovanni Resta, Apr 10 2019
Comments