A307468 Cogrowth sequence for the Heisenberg group.
1, 4, 28, 232, 2156, 21944, 240280, 2787320, 33820044, 424925872, 5486681368, 72398776344, 972270849512, 13247921422480, 182729003683352, 2546778437385032, 35816909974343308, 507700854900783784, 7246857513425470288, 104083322583897779656
Offset: 0
Examples
For n=1 the a(1)=4 words are x^{-1}x, xx^{-1}, y^{-1}y, yy^{-1}.
Links
- Jay Pantone, Table of n, a(n) for n = 0..200
- Cédric Béguin, Alain Valette and Andrzej Zuk, On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator, Journal of Geometry and Physics, 21 (1997), 337-356.
- D. Lind and K, Schmidt, A survey of algebraic actions of the discrete Heisenberg group, arXiv:1502.06243 [math.DS], 2015; Russian Mathematical Surveys, 70:4 (2015), 77-142.
Crossrefs
Formula
Asymptotics: a(n) ~ (1/2) * 16^n * n^(-2).
Comments