cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Igor Pak

Igor Pak's wiki page.

Igor Pak has authored 2 sequences.

A307468 Cogrowth sequence for the Heisenberg group.

Original entry on oeis.org

1, 4, 28, 232, 2156, 21944, 240280, 2787320, 33820044, 424925872, 5486681368, 72398776344, 972270849512, 13247921422480, 182729003683352, 2546778437385032, 35816909974343308, 507700854900783784, 7246857513425470288, 104083322583897779656
Offset: 0

Author

Igor Pak, Apr 09 2019

Keywords

Comments

This is the number of words of length 2n in the letters x,x^{-1},y,y^{-1} that equal the identity of the Heisenberg group H=.
Also, this is the number of closed walks of length 2n on the square lattice enclosing algebraic area 0 [Béguin et al.]. - Andrey Zabolotskiy, Sep 15 2021

Examples

			For n=1 the a(1)=4 words are x^{-1}x, xx^{-1}, y^{-1}y, yy^{-1}.
		

Crossrefs

Related cogrowth sequences: Z A000984, Z^2 A002894, Z^3 A002896, (Z/kZ)^*2 for k = 2..5: A126869, A047098, A107026, A304979, Richard Thompson's group F A246877. The cogrowth sequences for BS(N,N) for N = 2..10 are A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

Formula

Asymptotics: a(n) ~ (1/2) * 16^n * n^(-2).

A014298 a(n) = 2^n * (3n)! / (2n+1)!.

Original entry on oeis.org

1, 2, 24, 576, 21120, 1048320, 65802240, 5000970240, 446557224960, 45830873088000, 5316381278208000, 687893507997696000, 98231192942070988800, 15345895252950201139200, 2603510504983275503616000, 476694375041453927694336000, 93692112621783944697741312000
Offset: 0

Author

Keywords

Programs

  • GAP
    List([0..20], n-> 2^n*Factorial(3*n)/Factorial(2*n+1) ); # G. C. Greubel, Jun 12 2019
  • Magma
    [2^n*Factorial(3*n)/Factorial(2*n+1): n in [0..20]]; // G. C. Greubel, Jun 12 2019
    
  • Mathematica
    Table[2^n (3n)!/(2n+1)!,{n,0,20}] (* Harvey P. Dale, Mar 19 2016 *)
  • PARI
    a(n) = 2^n * (3*n)! / (2*n+1)! \\ Michel Marcus, Jun 24 2013
    
  • Sage
    [2^n*factorial(3*n)/factorial(2*n+1) for n in (0..20)] # G. C. Greubel, Jun 12 2019
    

Formula

From G. C. Greubel, Jun 12 2019: (Start)
G.f.: Hypergeometric3F1(1/3, 2/3, 1; 3/2; 27*x/2).
E.g.f.: sqrt(2/(3*x)) * sin( arcsin(sqrt(27*x/2))/3 ).
E.g.f.: hypergeometric2F1(1/3, 2/3; 3/2; 27*x/2) (End)