A307481 Numbers that can be expressed as x+2y+z such that x, y, z, x+y, y+z, and x+2y+z are all positive squares.
625, 2500, 5625, 10000, 15625, 22500, 28561, 30625, 40000, 50625, 62500, 75625, 83521, 90000, 105625, 114244, 122500, 140625, 142129, 160000, 180625, 202500, 225625, 250000, 257049, 275625, 302500, 330625, 334084, 360000, 390625, 422500, 455625, 456976, 490000, 525625
Offset: 1
Keywords
Examples
Each addition pyramid is built up from three numbers x, y, and z as follows: . x+2y+z / \ / \ x+y y+z / \ / \ / \ / \ x y z . The first two terms, a(1)=625 and a(2)=2500, are the apex values for the first two pyramids consisting entirely of squares: . 625 2500 / \ / \ / \ / \ 225 400 900 1600 / \ / \ / \ / \ / \ / \ / \ / \ 81 144 256 324 576 1024
Links
- David A. Corneth, Table of n, a(n) for n = 1..10575 (terms <= 3*10^10)
- David A. Corneth, Two examples in a pyramid shape
- Sean A. Irvine, Java program (github)
- Rémy Sigrist, C++ program for A307481
Crossrefs
Cf. A000290 (squares).
Programs
-
Magma
a:=[]; for sw in [1..725] do w:=sw^2; for su in [1..Isqrt(w div 2)] do u:=su^2; v:=w-u; if IsSquare(v) then for sx in [1..Isqrt(u)] do x:=sx^2; y:=u-x; if (y gt 0) and IsSquare(y) then z:=v-y; if IsSquare(z) then a[#a+1]:=w; break su; end if; end if; end for; end if; end for; end for; a; // Jon E. Schoenfield, May 07 2019 (C++) See Links section.
Comments