A307487 G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} mu(k)*x^k*A(x)^k/(1 - x^k*A(x)^k)^2, where mu() is the Möbius function (A008683).
1, 1, 2, 6, 19, 65, 231, 847, 3187, 12223, 47610, 187836, 749055, 3014453, 12226718, 49931342, 205133243, 847224291, 3515681010, 14650664552, 61286007817, 257256430363, 1083272333869, 4574656128903, 19369837160689, 82214738381631, 349743277470990
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 65*x^5 + 231*x^6 + 847*x^7 + 3187*x^8 + 12223*x^9 + 47610*x^10 + ...
Programs
-
Mathematica
terms = 27; CoefficientList[1/x InverseSeries[Series[x/(1 + Sum[EulerPhi[k] x^k, {k, 1, terms}]), {x, 0, terms}], x], x] terms = 27; A[] = 0; Do[A[x] = 1 + Sum[MoebiusMu[k] x^k A[x]^k/(1 - x^k A[x]^k)^2, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x] terms = 27; A[] = 0; Do[A[x] = 1 + Sum[EulerPhi[k] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
Formula
G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} phi(k)*x^k*A(x)^k, where phi() is the Euler totient function (A000010).
G.f.: A(x) = (1/x)*Series_Reversion(x/(1 + Sum_{k>=1} phi(k)*x^k)).