A307502 Self-convolution of the Dedekind psi function (A001615).
0, 1, 6, 17, 36, 64, 108, 172, 240, 340, 444, 612, 744, 980, 1164, 1504, 1704, 2172, 2388, 2964, 3288, 3968, 4272, 5272, 5520, 6624, 7104, 8276, 8640, 10404, 10572, 12480, 13032, 14988, 15300, 18204, 18048, 21004, 21636, 24616, 24648, 29036, 28452, 32768, 33552, 37488
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Dedekind Function
Programs
-
Mathematica
Rest[nmax = 46; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 - x^k)^2, {k, 1, nmax}]^2, {x, 0, nmax}], x]] psi[n_] := psi[n] = Sum[MoebiusMu[n/d]^2 d, {d, Divisors @ n}]; a[n_] := a[n] = Sum[psi[k] psi[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 46}]
Formula
G.f.: (Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2)^2.
Conjecture: Sum_{k=1..n} a(k) ~ 75 * n^4 / (8 * Pi^4). - Vaclav Kotesovec, Aug 20 2025