A307515 Heinz numbers of integer partitions with Durfee square of length > 2.
125, 175, 245, 250, 275, 325, 343, 350, 375, 385, 425, 455, 475, 490, 500, 525, 539, 550, 575, 595, 605, 625, 637, 650, 665, 686, 700, 715, 725, 735, 750, 770, 775, 805, 825, 833, 845, 847, 850, 875, 910, 925, 931, 935, 950, 975, 980, 1000, 1001, 1015, 1025
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 125: {3,3,3} 175: {3,3,4} 245: {3,4,4} 250: {1,3,3,3} 275: {3,3,5} 325: {3,3,6} 343: {4,4,4} 350: {1,3,3,4} 375: {2,3,3,3} 385: {3,4,5} 425: {3,3,7} 455: {3,4,6} 475: {3,3,8} 490: {1,3,4,4} 500: {1,1,3,3,3} 525: {2,3,3,4} 539: {4,4,5} 550: {1,3,3,5} 575: {3,3,9} 595: {3,4,7}
References
- Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.
Links
- Gus Wiseman, Table of n, a(n) for n = 1..22485
- FindStat, St000183: The side length of the Durfee square of an integer partition
- Wikipedia, Durfee square.
Crossrefs
Programs
-
Mathematica
durf[n_]:=Length[Select[Range[PrimeOmega[n]], Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]][[#]]>=#&]]; Select[Range[100], durf[#]>2&]
Comments