cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307586 Numbers k such that the determinant of the Vandermonde matrix of their digits is equal to sigma(k), the sum of divisors of k.

Original entry on oeis.org

1, 1349, 12673, 12934, 16748, 16874, 17034, 28957, 60438, 67180, 80612, 81257, 87021, 93651, 413856, 712530, 813624, 942786
Offset: 1

Views

Author

Paolo P. Lava, Apr 16 2019

Keywords

Comments

Tested all the 8877691 numbers with distinct digits; no additional terms. - Giovanni Resta, Apr 16 2019

Examples

			     | 1  1   1    1     1   |
     | 1  2   4    8     16  |
det  | 1  6  36   216   1296 | = 14400  = sigma(12673).
     | 1  7  49   343   2401 |
     | 1  3   9    27    81  |
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(linalg): P:=proc(q) local a,c,k,n;
    for n from 1 to q do a:=convert(n,base,10): c:=[]:
    for k from 1 to nops(a) do c:=[op(c), a[-k]]; od;
    if sigma(n)=det(vandermonde(c)) then print(n); fi; od; end: P(10^9);

A307651 a(n) is the determinant of the Vandermonde matrix of the digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, -7, -6, -5, -4, -3, -2, -1, 0
Offset: 0

Views

Author

Rémy Sigrist, Apr 20 2019

Keywords

Examples

			             | 2^0 2^1 2^2 |
a(234) = det | 3^0 3^1 3^2 | = 2.
             | 4^0 4^1 4^2 |
		

Crossrefs

See A307710 for the factorial base variant.

Programs

  • PARI
    a(n) = my (d=digits(n)); matdet(matrix(#d,#d,r,c,d[r]^(c-1)))

Formula

a(n) != 0 iff n belongs to A010784.
a(n) = 0 for any n > 9876543210.
Showing 1-2 of 2 results.