cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A381163 a(n) = Sum_{k=0..n} binomial(n,k)*(4*k)!*(2*k)!/(k!)^6.

Original entry on oeis.org

1, 49, 15217, 7437505, 4444068913, 2978797867489, 2151085262277121, 1636678166183569873, 1294384621280668799665, 1054623536679756097536097, 879831837105310233485202337, 748258333337818719124808979313, 646586399881218539235007860940609, 566284969531710881501724274920081265
Offset: 0

Views

Author

Stefano Spezia, Feb 15 2025

Keywords

Comments

Calabi-Yau series number 76.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n,k](4k)!(2k)!/k!^6,{k,0,n}]; Array[a,14,0]

Formula

G.f.: hypergeom([1/2, 1/2, 1/4, 3/4], [1, 1, 1], 2^10*x/(1-x))/(1-x).
a(n) = hypergeom([1/4, 1/2, 1/2, 3/4, -n], [1, 1, 1, 1], -2^10).
a(n) == 1 (mod 48).
a(n) ~ 5^(2*n+4) * 41^(n+2) / (2^(41/2) * Pi^2 * n^2). - Vaclav Kotesovec, May 29 2025
Showing 1-1 of 1 results.