A307636 Numbers k with property that no two divisors of k share a common digit.
1, 2, 3, 4, 5, 6, 7, 8, 9, 23, 27, 29, 37, 43, 47, 49, 53, 59, 67, 73, 79, 83, 86, 87, 89, 97, 223, 227, 229, 233, 239, 257, 263, 267, 269, 277, 283, 293, 307, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 409, 433, 439, 443, 449, 457, 463, 467, 479, 487, 499, 503
Offset: 1
Examples
9566 is such a number because its divisors are 1, 2, 4783 and 9566, and no two of them share the same digit.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Giorgos Kalogeropoulos, Hostile Divisor Numbers, Code Golf, May 2019.
Crossrefs
A038603 is a subsequence.
Programs
-
Maple
filter:= proc(n) local D,i,j; D:= map(t -> convert(convert(t,base,10),set), convert(numtheory:-divisors(n),list)); for i from 2 to nops(D) do for j from 1 to i-1 do if D[i] intersect D[j] <> {} then return false fi od od; true end proc: select(filter, [$1..1000]); # Robert Israel, Jul 07 2019
-
Mathematica
Select[Range@1000,!Or@@IntersectingQ@@@Subsets[IntegerDigits@Divisors[#],{2}]&]
-
PARI
isok(k) = {my(d = divisors(k), dd = apply(x->Set(digits(x)), d)); for (i=1, #dd, for (j=i+1, #dd, if (#setintersect(dd[i], dd[j]), return (0)););); return (1);} \\ Michel Marcus, Jul 07 2019
-
Python
from itertools import count, combinations, islice from sympy import divisors def A307636gen(): return filter(lambda n:all(len(set(s[0])&set(s[1])) == 0 for s in combinations((str(d) for d in divisors(n,generator=True)),2)),count(1)) A307636_list = list(islice(A307636gen(),20)) # Chai Wah Wu, Dec 08 2021