cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307636 Numbers k with property that no two divisors of k share a common digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 23, 27, 29, 37, 43, 47, 49, 53, 59, 67, 73, 79, 83, 86, 87, 89, 97, 223, 227, 229, 233, 239, 257, 263, 267, 269, 277, 283, 293, 307, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 409, 433, 439, 443, 449, 457, 463, 467, 479, 487, 499, 503
Offset: 1

Views

Author

Giorgos Kalogeropoulos, May 03 2019

Keywords

Examples

			9566 is such a number because its divisors are  1, 2, 4783 and 9566, and no two of them share the same digit.
		

Crossrefs

A038603 is a subsequence.

Programs

  • Maple
    filter:= proc(n) local D,i,j;
      D:= map(t -> convert(convert(t,base,10),set), convert(numtheory:-divisors(n),list));
      for i from 2 to nops(D) do
        for j from 1 to i-1 do
           if D[i] intersect D[j] <> {} then return false fi
      od od;
      true
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jul 07 2019
  • Mathematica
    Select[Range@1000,!Or@@IntersectingQ@@@Subsets[IntegerDigits@Divisors[#],{2}]&]
  • PARI
    isok(k) = {my(d = divisors(k), dd = apply(x->Set(digits(x)), d)); for (i=1, #dd, for (j=i+1, #dd, if (#setintersect(dd[i], dd[j]), return (0)););); return (1);} \\ Michel Marcus, Jul 07 2019
    
  • Python
    from itertools import count, combinations, islice
    from sympy import divisors
    def A307636gen(): return filter(lambda n:all(len(set(s[0])&set(s[1])) == 0 for s in combinations((str(d) for d in divisors(n,generator=True)),2)),count(1))
    A307636_list = list(islice(A307636gen(),20)) # Chai Wah Wu, Dec 08 2021