cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307676 Expansion of Product_{k>=1} (1 - x^k*(1 - x))/(1 - x^k*(1 + x)).

Original entry on oeis.org

1, 0, 2, 4, 6, 14, 22, 46, 74, 138, 236, 406, 698, 1182, 1994, 3342, 5590, 9274, 15386, 25380, 41818, 68670, 112586, 184210, 300940, 490962, 800026, 1302278, 2118008, 3442042, 5590092, 9073632, 14720738, 23872776, 38700910, 62720726, 101622398, 164617032
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^k*(1 - x))/(1 - x^k*(1 + x)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k*(1-x))/(1-x^k*(1+x))))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, ((1+x)^d-(1-x)^d)/d))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} ((1+x)^d - (1-x)^d)/d).
a(n) ~ phi^(n+4) / sqrt(5), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 31 2021