A307680 Expansion of e.g.f. Product_{k>=1} (1 + x^k/(1 - x)^k)^(1/k).
1, 1, 3, 17, 131, 1239, 14029, 187627, 2906553, 50982929, 993806531, 21270277401, 496425262123, 12577053063847, 344382608381421, 10139294386051139, 319175215666010609, 10684742192933940897, 378662321114852778883, 14158327369578651838369, 557151639159864934384851
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 131*x^4/4! + 1239*x^5/5! + 14029*x^6/6! + 187627*x^7/7! + 2906553*x^8/8! + ...
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[Product[(1 + x^k/(1 - x)^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! nmax = 20; CoefficientList[Series[Exp[Sum[Sum[(-1)^(d + 1), {d, Divisors[k]}] x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!