A307687 a(n) is the first prime value of the n-th cyclotomic polynomial.
2, 2, 3, 2, 5, 3, 7, 2, 3, 11, 11, 13, 13, 43, 151, 2, 17, 46441, 19, 61681, 368089, 683, 23, 241, 5, 2731, 3, 15790321, 29, 331, 31, 2, 599479, 43691, 2984619585279628795345143571, 530713, 37, 174763, 900900900900990990990991, 61681, 41, 5419, 43, 9080418348371887359375390001
Offset: 1
Keywords
Examples
a(10)=11 because the 10th cyclotomic polynomial is Phi(10,x) = x^4 - x^3 + x^2 - x + 1, and Phi(10,2)=11 is prime but Phi(10,1)=1 is not prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..426
Crossrefs
Cf. A117544.
Programs
-
Maple
f:= proc(n) local C,x,k; C:= unapply(numtheory:-cyclotomic(n,x),x); for k from 1 do if isprime(C(k)) then return C(k) fi od end proc: map(f, [$1..100]);
-
Mathematica
a[n_] := Module[{c, k}, c[x_] = Cyclotomic[n, x]; For[k = 1, True, k++, If[PrimeQ[c[k]], Return[c[k]]]]]; Array[a, 100] (* Jean-François Alcover, Apr 29 2019 *)
-
PARI
a(n) = my(k=1, p); while (!isprime(p=polcyclo(n, k)), k++); p; \\ Michel Marcus, Apr 22 2019