cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307708 G.f. A(x) satisfies: A(x) = x*exp(Sum_{n>=1} Sum_{k>=1} n*a(n)*x^(n*k)/k).

Original entry on oeis.org

0, 1, 1, 3, 12, 63, 396, 2917, 24425, 228827, 2367622, 26799874, 329366481, 4367857498, 62177776756, 945859958142, 15315466471574, 263041021397267, 4776856199304608, 91464926203961913, 1841802097153485730, 38912445829903177835, 860714999879617986231, 19892998348606063366793
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2019

Keywords

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 63*x^5 + 396*x^6 + 2917*x^7 + 24425*x^8 + 228827*x^9 + 2367622*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x Exp[Sum[Sum[j a[j] x^(j k)/k, {k, 1, n - 1}], {j, 1, n - 1}]], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 0, 23}]
    a[n_] := a[n] = SeriesCoefficient[x Product[1/(1 - x^k)^(k a[k]), {k, 1, n - 1}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 0, 23}]

Formula

G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} 1/(1 - x^n)^(n*a(n)).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d^2*a(d) ) * a(n-k+1).
a(n) ~ c * n!, where c = 0.84641771217794232735080969007037092551823744748019035784457815491357287461... - Vaclav Kotesovec, Nov 05 2021

A307722 G.f. A(x) satisfies: A(x) = x*exp(2*Sum_{n>=1} Sum_{k>=1} n*a(n)*x^(n*(2*k-1))/(2*k - 1)).

Original entry on oeis.org

0, 1, 2, 10, 78, 794, 9870, 143610, 2382350, 44266538, 909575170, 20468012850, 500542618118, 13218631046786, 374965272837542, 11372416113131346, 367296622702990270, 12587154399475110546, 456238999451039779510, 17440439387336903608866, 701272672299320517560470
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2019

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 10*x^3 + 78*x^4 + 794*x^5 + 9870*x^6 + 143610*x^7 + 2382350*x^8 + 44266538*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x Exp[2 Sum[Sum[j a[j] x^(j (2 k - 1))/(2 k - 1), {k, 1, n - 1}], {j, 1, n - 1}]], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 0, 20}]
    a[n_] := a[n] = SeriesCoefficient[x Product[((1 + x^k)/(1 - x^k))^(k a[k]), {k, 1, n - 1}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 0, 20}]

Formula

G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} ((1 + x^n)/(1 - x^n))^(n*a(n)).
Showing 1-2 of 2 results.