cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307716 Denominator of the barycenter of first n primes defined as a(n) = denominator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).

Original entry on oeis.org

1, 5, 10, 1, 14, 41, 58, 11, 50, 129, 160, 197, 119, 281, 328, 127, 110, 501, 568, 213, 89, 791, 874, 963, 53, 27, 1264, 457, 370, 1593, 1720, 1851, 71, 2127, 2276, 809, 1292, 2747, 2914, 3087, 1633, 1149, 34, 3831, 1007, 4227, 4438, 4661
Offset: 1

Views

Author

Andres Cicuttin, Apr 25 2019

Keywords

Comments

It appears that lim_{n->infinity} (1/n)*(A014285(n)/A007504(n)) = k, where k is a constant around 2/3.
a(n) = A007504(n) if and only if n is in A307414. - Robert Israel, Jul 08 2019

Crossrefs

Cf. A306834 (numerators), A272206, A007504, A014285, A307414.

Programs

  • Maple
    S1:= 0:S2:= 0:
    for n from 1 to 100 do
      p:= ithprime(n);
      S1:= S1 + p;
      S2:= S2 + n*p;
      A[n]:= denom(S2/S1)
    od:
    seq(A[i],i=1..100); # Robert Israel, Jul 08 2019
  • Mathematica
    a[n_]:=Sum[i*Prime[i], {i, 1, n}]/Sum[Prime[i], {i, 1, n}];
    Table[a[n]//Denominator, {n, 1, 48}]
  • PARI
    a(n) = my(vp=primes(n)); denominator(sum(i=1, n, i*vp[i])/sum(i=1, n, vp[i])) \\ Michel Marcus, Apr 25 2019

Formula

a(n) = denominator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).
a(n) = denominator(A014285(n)/A007504(n)).