A307742 Quasi-logarithm A064097(n) of von Mangoldt's exponential function A014963(n).
0, 1, 2, 1, 3, 0, 4, 1, 2, 0, 5, 0, 5, 0, 0, 1, 5, 0, 6, 0, 0, 0, 7, 0, 3, 0, 2, 0, 7, 0, 7, 1, 0, 0, 0, 0, 7, 0, 0, 0, 7, 0, 8, 0, 0, 0, 9, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 9, 0, 8, 0, 0, 1, 0, 0, 9, 0, 0, 0, 9, 0, 8, 0, 0, 0, 0, 0, 9, 0, 2, 0, 9, 0, 0, 0, 0, 0, 9
Offset: 1
Keywords
Links
- I. V. Serov, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
qLog[n_] := qLog[n] = Module[{p, e}, If[n == 1, 0, Sum[{p, e} = pe; (1 + qLog[p-1])e, {pe, FactorInteger[n]}]]]; a[n_] := qLog[Exp[MangoldtLambda[n]]]; Array[a, 100] (* Jean-François Alcover, May 07 2019 *)
-
PARI
mang(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963 ql(n) = if (n==1, 0, if(isprime(n),1+ql(n-1), sumdiv(n,p, if(isprime(p),ql(p)*valuation(n,p))))); \\ A064097 a(n) = ql(mang(n)); \\ Michel Marcus, Apr 26 2019