cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307742 Quasi-logarithm A064097(n) of von Mangoldt's exponential function A014963(n).

Original entry on oeis.org

0, 1, 2, 1, 3, 0, 4, 1, 2, 0, 5, 0, 5, 0, 0, 1, 5, 0, 6, 0, 0, 0, 7, 0, 3, 0, 2, 0, 7, 0, 7, 1, 0, 0, 0, 0, 7, 0, 0, 0, 7, 0, 8, 0, 0, 0, 9, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 9, 0, 8, 0, 0, 1, 0, 0, 9, 0, 0, 0, 9, 0, 8, 0, 0, 0, 0, 0, 9, 0, 2, 0, 9, 0, 0, 0, 0, 0, 9
Offset: 1

Views

Author

I. V. Serov, Apr 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    qLog[n_] := qLog[n] = Module[{p, e}, If[n == 1, 0, Sum[{p, e} = pe; (1 + qLog[p-1])e, {pe, FactorInteger[n]}]]];
    a[n_] := qLog[Exp[MangoldtLambda[n]]];
    Array[a, 100] (* Jean-François Alcover, May 07 2019 *)
  • PARI
    mang(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963
    ql(n) = if (n==1, 0, if(isprime(n),1+ql(n-1), sumdiv(n,p, if(isprime(p),ql(p)*valuation(n,p))))); \\ A064097
    a(n) = ql(mang(n)); \\ Michel Marcus, Apr 26 2019

Formula

a(n) = A064097(A014963(n)).
a(n) = 1 + A064097(n-1) if n is prime.
a(n) = a(p) if n=p^k with k > 1.
a(n) = 0 if n is not a prime power or n = 1.
a(n) = -Sum_{d|n} A064097(d)*A008683(d) by Mobius inversion.