cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307641 Triangle T(i,j=1..i) read by rows which contain the naturally ordered prime-or-one factorization of the row number i.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 1

Views

Author

I. V. Serov, Apr 19 2019

Keywords

Comments

i=Product_{j=1..i} T(i,j). This is an adjusted formulation of the fundamental theorem of arithmetic with the fixed order of the prime-or-one factors, as well as with the regular length i of the factorization of i.
Remove all 1's except for n = 1 to get irregular triangle A307746.
A307723 is a quasi-logarithmic binary encoding of this triangle.

Examples

			Triangle begins:
  1,
  1, 2,
  1, 1, 3,
  1, 2, 1, 2,
  1, 1, 1, 1, 5,
  1, 2, 3, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 7,
  1, 2, 1, 2, 1, 1, 1, 2,
  1, 1, 3, 1, 1, 1, 1, 1, 3,
  1, 2, 1, 1, 5, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1,11,
  1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1,
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Map[Which[PrimeNu@ # > 1, 1, And[PrimeQ@ #, Mod[n, #] == 0], #, Mod[n, #] == 0, FactorInteger[#][[1, 1]], True, 1] &, Range@ n], {n, 13}] // Flatten (* Michael De Vlieger, Apr 23 2019 *)
  • PARI
    w(n) = my(t=isprimepower(n)); if (t, t, 0);
    row(n) = vector(n, k, mnk = if ((n % k) == 0, k, 1); if (t=w(k), sqrtnint(mnk, t), 1)); \\ Michel Marcus, Apr 21 2019

Formula

T(i,j) = A307662(i,j)^w(j), where w(j)=0 if A100995(j)=0; otherwise w(j)=1/A100995(j), for 1 <= j <= n.

A307742 Quasi-logarithm A064097(n) of von Mangoldt's exponential function A014963(n).

Original entry on oeis.org

0, 1, 2, 1, 3, 0, 4, 1, 2, 0, 5, 0, 5, 0, 0, 1, 5, 0, 6, 0, 0, 0, 7, 0, 3, 0, 2, 0, 7, 0, 7, 1, 0, 0, 0, 0, 7, 0, 0, 0, 7, 0, 8, 0, 0, 0, 9, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 9, 0, 8, 0, 0, 1, 0, 0, 9, 0, 0, 0, 9, 0, 8, 0, 0, 0, 0, 0, 9, 0, 2, 0, 9, 0, 0, 0, 0, 0, 9
Offset: 1

Views

Author

I. V. Serov, Apr 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    qLog[n_] := qLog[n] = Module[{p, e}, If[n == 1, 0, Sum[{p, e} = pe; (1 + qLog[p-1])e, {pe, FactorInteger[n]}]]];
    a[n_] := qLog[Exp[MangoldtLambda[n]]];
    Array[a, 100] (* Jean-François Alcover, May 07 2019 *)
  • PARI
    mang(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963
    ql(n) = if (n==1, 0, if(isprime(n),1+ql(n-1), sumdiv(n,p, if(isprime(p),ql(p)*valuation(n,p))))); \\ A064097
    a(n) = ql(mang(n)); \\ Michel Marcus, Apr 26 2019

Formula

a(n) = A064097(A014963(n)).
a(n) = 1 + A064097(n-1) if n is prime.
a(n) = a(p) if n=p^k with k > 1.
a(n) = 0 if n is not a prime power or n = 1.
a(n) = -Sum_{d|n} A064097(d)*A008683(d) by Mobius inversion.
Showing 1-2 of 2 results.