cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307745 Perfect powers y^m with y > 1 and m > 1 which are Brazilian repdigits with three or more digits > 1 in some base.

Original entry on oeis.org

1521, 1600, 2401, 2744, 6084, 17689, 61009, 244036, 294849, 1179396, 1483524, 2653641, 2725801, 2989441, 4717584, 5239521, 7371225, 9591409, 10614564, 11957764, 14447601, 17397241, 18870336, 20277009, 20958084, 23882769, 26904969, 29484900, 38365636, 38825361
Offset: 1

Views

Author

Bernard Schott, Apr 26 2019

Keywords

Comments

The terms of this sequence are solutions y^m of the Diophantine equation a * (b^q - 1)/(b-1) = y^m with 1 < a < b, y >= 2, q >= 3, m >= 2. This equation has been studied by Kustaa A. Inkeri in Acta Arithmetica; some terms of this sequence come from his article where the author limits the study of this equation to bases b <= 100.
The case a = 1 is clarified in A208242; it corresponds to the Nagell-Ljunggren equation.
The sequence has infinitely many terms because the Diophantine equation 3*(x^2+x+1) = y^2 has infinitely many solutions. - Giovanni Resta, Apr 26 2019
The corresponding solutions (x, y) of this Diophantine equation are (A028231, A341671).
The integers y such that y^2 (m = 2) satisfies this equation are in A158235, except 11 and 20 corresponding to a = 1. - Bernard Schott, Apr 27 2019

Examples

			3 * (22^3-1)/(22-1) = 39^2 and (333)_22 = 39^2 = 1521.
58 * (99^4-1)/(99-1) = 7540^2 and (AAAA)_99 = 7540^2 = 56851600 where A is the symbol for 58 in base 99.
		

Crossrefs

Subsequence of A001597 and of A125134.
Cf. A158235, A208242 (a=1, that is, with repunits).

Programs

  • Mathematica
    rupQ[n_, mx_] := Block[{t, x, p}, p = x^2 + x + 1; While[(t = p /. x -> mx) <= n && Reduce[p == n && x >= mx, x, Integers] === False, p = x*p + 1]; t <= n]; repdQ[n_] := AnyTrue[ Rest@ Most@ Divisors@ n, rupQ[n/#, #+1] &]; ex = 2; up = 10^7; L = {}; While[2^ex <= up, L = Union[L, Parallelize@ Select[ Range[2, Floor[ up^(1/ex)] ]^ex, repdQ]]; ex = NextPrime@ ex]; L (* Giovanni Resta, Apr 27 2019 *)
  • PARI
    isokb(n) = for(b=2, n-2, d=digits(n, b); if((#d > 2) && (vecmin(d)==vecmax(d)) && (d[1] > 1), return (1))); 0;
    isok(n) = ispower(n) && isokb(n); \\ Michel Marcus, Apr 28 2019

Extensions

More terms from Giovanni Resta, Apr 26 2019