A307751 Numbers k such that the number m multiplied by the product of all its digits contains k as a substring, where m = k multiplied by the product of all its digits.
0, 1, 5, 6, 7, 11, 19, 79, 84, 111, 123, 176, 232, 396, 1111, 11111, 111111, 331788, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111
Offset: 1
Examples
79 is in the sequence as m = 79*7*9 = 4977, and 4977*4*9*7*7 = 8779428, and '8779428' contains '79' as a substring. 331788 is in the sequence as m = 331788*3*3*1*7*8*8 = 1337769216, and 1337769216*1*3*3*7*7*6*9*2*1*6 = 382291633317888, and '382291633317888' contains '331788' as a substring.
Links
- Eric Angelini, Revenant Numbers, Cinquante Signes, Oct 19 2019.
- Eric Angelini, Revenant Numbers, Cinquante Signes, Oct 19 2019. [Cached copy, pdf file, with permission]
Programs
-
Magma
a:=[0]; f:=func
; for k in [1..1200000] do t:=IntegerToString(f(f(k))); s:=IntegerToString(k); if s in t then Append(~a,k); end if; end for; a; // Marius A. Burtea, Nov 10 2019 -
Mathematica
f[n_] := n * Times @@ IntegerDigits[n]; aQ[n_] := SequenceCount[IntegerDigits[ f[f[n]] ], IntegerDigits[n]] > 0; Select[Range[0, 10^6], aQ] (* Amiram Eldar, Nov 10 2019 *)
Extensions
a(24)-a(27) from Giovanni Resta, Nov 15 2019
Comments