A307753 Number of palindromic pentagonal numbers of length n whose index is also palindromic.
3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
There is only one palindromic pentagonal number of length 4 whose index is also palindromic, 44->2882. Thus, a(4)=1.
Links
- Patrick De Geest, Palindromic Squares in bases 2 to 17
- Eric Weisstein's World of Mathematics, Palindromic Number
Programs
-
Mathematica
A002069 = {0, 1, 5, 22, 1001, 2882, 15251, 720027, 7081807, 7451547, 26811862, 54177145, 1050660501, 1085885801, 1528888251, 2911771192, 2376574756732, 5792526252975, 5875432345785, 10810300301801, 264571020175462, 5292834004382925, 10808388588380801, 15017579397571051, 76318361016381367, 150621384483126051, 735960334433069537, 1003806742476083001, 1087959810189597801, 2716280733370826172}; A028386 = {0, 1, 2, 4, 26, 44, 101, 693, 2173, 2229, 4228, 6010, 26466, 26906, 31926, 44059, 1258723, 1965117, 1979130, 2684561, 13280839, 59401650, 84885761, 100058581, 225563533, 316882086, 700457153, 818049201, 851649306, 1345679688}; Table[Length[Select[A028386[[Table[Select[Range[18], IntegerLength[A002069[[#]]] == n || (n == 1 && A002069[[#]] == 0) &], {n, 18}][[n]]]], PalindromeQ[#] &]], {n, 18}]
Extensions
a(19)-a(35) from Chai Wah Wu, Sep 07 2019
Comments