cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307790 Number of palindromic heptagonal numbers with exactly n digits.

Original entry on oeis.org

3, 1, 1, 2, 1, 1, 3, 0, 0, 1, 4, 3, 2, 0, 1, 0, 1, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Robert Price, Apr 28 2019

Keywords

Comments

Number of terms in A054910 with exactly n digits.

Examples

			There are only two 4-digit heptagonal numbers that are palindromic, 3553 and 4774. Thus, a(4)=2.
		

Crossrefs

Programs

  • Mathematica
    A054910 = {0, 1, 7, 55, 616, 3553, 4774, 60606, 848848, 4615164, 5400045, 6050506, 7165445617, 62786368726, 65331413356, 73665056637, 91120102119, 345546645543, 365139931563, 947927729749, 3646334336463, 7111015101117, 17685292586717, 19480809790808491, 615857222222758516, 1465393008003935641, 8282802468642082828, 15599378333387399551, 20316023422432061302}; Table[Length[Select[A054910, IntegerLength[#] == n || (n == 1 && # == 0) &]], {n, 19}]
  • Python
    def afind(terms):
      m, n, c = 0, 1, 0
      while n <= terms:
        p = m*(5*m-3)//2
        s = str(p)
        if len(s) == n:
           if s == s[::-1]: c += 1
        else:
          print(c, end=", ")
          n, c = n+1, int(s == s[::-1])
        m += 1
    afind(14) # Michael S. Branicky, Mar 01 2021

Extensions

a(20)-a(22) from Michael S. Branicky, Mar 01 2021

A307791 Number of palindromic heptagonal numbers of length n whose index is also palindromic.

Original entry on oeis.org

3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Robert Price, Apr 28 2019

Keywords

Comments

Is there a nonzero term beyond a(4)?

Examples

			There is only one palindromic heptagonal number of length 4 whose index is also palindromic, 44->4774. Thus, a(4)=1.
		

Crossrefs

Programs

  • Mathematica
    A054910 = {0, 1, 7, 55, 616, 3553, 4774, 60606, 848848, 4615164, 5400045, 6050506, 7165445617, 62786368726, 65331413356, 73665056637, 91120102119, 345546645543, 365139931563, 947927729749, 3646334336463, 7111015101117, 717685292586717, 19480809790808491, 615857222222758516, 1465393008003935641, 8282802468642082828, 15599378333387399551, 20316023422432061302};
    A054971 = {0, 1, 2, 5, 16, 38, 44, 156, 583, 1359, 1470, 1556, 53537, 158476, 161656, 171657, 190914, 371778, 382173, 615769, 1207698, 1686537, 16943262, 88274141, 496329416, 765609041, 1820198063, 2497949426, 2850685772}; Table[Length[Select[A054971[[Table[Select[Range[19], IntegerLength[A054910[[#]]] ==  n || (n == 1 && A054910[[#]] == 0) &], {n, 19}][[n]]]], PalindromeQ[#] &]], {n, 19}]
Showing 1-2 of 2 results.