A307767 The "non-residue" pseudoprimes: odd composite numbers n such that b(n)^((n-1)/2) == -1 (mod n), where base b(n) = A020649(n).
3277, 3281, 29341, 49141, 80581, 88357, 104653, 121463, 196093, 314821, 320167, 458989, 476971, 489997, 491209, 721801, 800605, 838861, 873181, 877099, 973241, 1004653, 1251949, 1268551, 1302451, 1325843, 1373653, 1397419, 1441091, 1507963, 1509709, 1530787, 1590751, 1678541, 1809697
Offset: 1
Keywords
Examples
2^((3277-1)/2) == -1 (mod 3277), 3^((3281-1)/2) == -1 (mod 3281), ...
Crossrefs
Programs
-
Mathematica
residueQ[n_, m_] := Module[{ans = 0}, Do[If[Mod[k^2, m] == n, ans = True; Break[]], {k, 0, Floor[m/2]}]; ans]; A020649[n_] := Module[{m = 0}, While[ residueQ[m, n], m++]; m]; aQ[n_] := CompositeQ[n] && PowerMod[A020649[n], ((n - 1)/2), n] == n - 1; Select[Range[3, 110000, 2], aQ] (* Amiram Eldar, Apr 27 2019 *)
Extensions
More terms from Amiram Eldar, Apr 27 2019
Comments