cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307767 The "non-residue" pseudoprimes: odd composite numbers n such that b(n)^((n-1)/2) == -1 (mod n), where base b(n) = A020649(n).

Original entry on oeis.org

3277, 3281, 29341, 49141, 80581, 88357, 104653, 121463, 196093, 314821, 320167, 458989, 476971, 489997, 491209, 721801, 800605, 838861, 873181, 877099, 973241, 1004653, 1251949, 1268551, 1302451, 1325843, 1373653, 1397419, 1441091, 1507963, 1509709, 1530787, 1590751, 1678541, 1809697
Offset: 1

Views

Author

Thomas Ordowski, Apr 27 2019

Keywords

Comments

As is well known, for an odd prime p, b(p) is the smallest quadratic non-residue b modulo p if and only if b(p) is the smallest base b such that b^((p-1)/2) == -1 (mod p). Note that b(n) is always a prime.
Conjecture: If 2^((n-1)/2) == -1 (mod n), then b(n) = 2, where b(n) as above. This is true for odd primes n; is it for odd composites n? If so, then all composite numbers n such that 2^((n-1)/2) == -1 (mod n) are in this sequence.
It seems that, for defined pseudoprimes n (similar to the odd primes p),
b(n) is the smallest base b such that b^((n-1)/2) == -1 (mod n), although this is not required by their definition.
Note: a "non-residue" pseudoprime n is a strong pseudoprime to base b(n); the Jacobi symbol (b(n)/n) = -1, where b(n) is the smallest non-residue modulo n; such a pseudoprime n is not a Proth number, so n = k*2^m + 1 with odd k > 2^m.
Problem: are there infinitely many such numbers?

Examples

			2^((3277-1)/2) == -1 (mod 3277), 3^((3281-1)/2) == -1 (mod 3281), ...
		

Crossrefs

Cf. A001262, A006970, A020649, A047713, A053760, A244626, A307798 (the "residue" pseudoprimes), A307809.

Programs

  • Mathematica
    residueQ[n_, m_] := Module[{ans = 0}, Do[If[Mod[k^2, m] == n, ans = True; Break[]], {k, 0, Floor[m/2]}]; ans]; A020649[n_] := Module[{m = 0}, While[ residueQ[m, n], m++]; m]; aQ[n_] := CompositeQ[n] && PowerMod[A020649[n], ((n - 1)/2), n] == n - 1; Select[Range[3, 110000, 2], aQ] (* Amiram Eldar, Apr 27 2019 *)

Extensions

More terms from Amiram Eldar, Apr 27 2019