cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307768 Number of n-step random walks on a line starting from the origin and returning to it at least once.

Original entry on oeis.org

0, 0, 2, 4, 10, 20, 44, 88, 186, 372, 772, 1544, 3172, 6344, 12952, 25904, 52666, 105332, 213524, 427048, 863820, 1727640, 3488872, 6977744, 14073060, 28146120, 56708264, 113416528, 228318856, 456637712, 918624304, 1837248608, 3693886906, 7387773812, 14846262964, 29692525928
Offset: 0

Views

Author

Robert FERREOL, Apr 27 2019

Keywords

Comments

a(n)/2^n tends to 1 as n goes to infinity; this means that on the line any random walk returns sooner or later to its starting point with a probability 1.
a(n) is also the number of heads-or-tails games of length n during which at some point there are as many heads as tails.

Examples

			The a(3)=4 three-step walks returning to 0 are [0, -1, 0, -1], [0, -1, 0, 1], [0, 1, 0, -1], [0, 1, 0, 1].
The a(4)=10 three-step walks returning to 0 are [0, -1, -2, -1, 0], [0, -1, 0, -1, -2], [0, -1, 0, -1, 0], [0, -1, 0, 1, 0], [0, -1, 0, 1, 2], [0, 1, 0, -1, -2], [0, 1, 0, -1, 0], [0, 1, 0, 1, 0], [0, 1, 0, 1, 2], [0, 1, 2, 1, 0].
		

Crossrefs

Programs

  • Maple
    b:=n->piecewise(n mod 2 = 0,binomial(n,n/2),2*binomial(n-1,(n-1)/2)):
    seq(2^n-b(n),n=0..20);
    # second program:
    A307768 := series(exp(2*x) - int((1/x + 2)*BesselI(1,2*x),x) - BesselI(1,2*x), x = 0, 36): seq(n!*coeff(A307768, x, n), n = 0 .. 35); # Mélika Tebni, Jun 19 2024
  • Mathematica
    a[n_] := If[n == 0, 0, 2^n - 2*Binomial[n-1, Floor[(n-1)/2]]];
    Array[a, 36, 0] (* Jean-François Alcover, May 05 2019 *)

Formula

a(n) = 2^n - A063886(n).
a(n+1) = 2*A045621(n) = 2*(2^n - binomial(n,floor(n/2))).
a(2n) = 2^(2n) - binomial(2n,n); a(2n+1) = 2*a(2n).
G.f.: (1-sqrt(1-4*x^2))/(1-2*x). - Alois P. Heinz, May 05 2019
n*(a(n)-2*a(n-1)) - 4*(n-3)*(a(n-2)-2*a(n-3)) = 0. - Robert Israel, May 06 2019
a(2n+2) - 2*a(2n+1) = A284016(n) = 2*Catalan(n). - Robert FERREOL, Aug 26 2019
From Mélika Tebni, Jun 19 2024: (Start)
E.g.f.: exp(2*x) - Integral_{x=-oo..oo} (1/x + 2)*BesselI(1, 2*x) dx - BesselI(1, 2*x).
a(n) = 2*(A027306(n) - A128014(n)). (End)