cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A336185 a(n) = prime(n) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * prime(n-k).

Original entry on oeis.org

2, 7, 39, 314, 3379, 45440, 733335, 13807364, 297105507, 7192224540, 193452015049, 5723688147650, 184742675924105, 6459822765521016, 243253254143586291, 9814313764465482774, 422366963490734937123, 19312961877700115922410, 935042624229107088382095
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Prime[n] + (1/n) Sum[Binomial[n, k] k a[k] Prime[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 19}]
    nmax = 19; CoefficientList[Series[-Log[1 - Sum[Prime[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

E.g.f.: -log(1 - Sum_{k>=1} prime(k) * x^k / k!).
Showing 1-1 of 1 results.