cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A327942 Numbers k such that both k and k+1 are nonunitary abundant numbers (A064597).

Original entry on oeis.org

165375, 893024, 1047375, 1576575, 2282175, 2304224, 2858624, 3614624, 4068224, 4096575, 4597424, 4975424, 6591375, 7574175, 8555624, 9511424, 10446975, 10749375, 10872224, 11477024, 12535424, 13773375, 13946624, 14277375, 15926624, 16041375, 16505775, 16769024
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2019

Keywords

Examples

			165375 is in the sequence since both 165375 and 165376 are nonunitary abundant: nusigma(165375) = 179280 > 165375, and nusigma(165376) = 183600 > 165376 (nusigma is the sum of nonunitary divisors, A048146).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); nuabQ[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (1 + Power @@@ FactorInteger[n]) > n; s = {}; q1 = False; Do[q2 = nuabQ[n]; If[q1 && q2, AppendTo[s, n - 1]]; q1 = q2, {n, 2, 10^7}]; s

A307821 The number of exponential abundant numbers below 10^n.

Original entry on oeis.org

0, 0, 1, 12, 102, 1045, 10449, 104365, 1043641, 10436775, 104367354
Offset: 1

Views

Author

Amiram Eldar, Apr 30 2019

Keywords

Examples

			Below 10^3 there is only one exponential abundant number, A129575(1) = 900, thus a(3) = 1.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ esigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq

Formula

Limit_{n->oo} a(n)/10^n = 0.001043673... is the density of exponential abundant numbers (see A129575). [Updated by Amiram Eldar, Sep 02 2022]

Extensions

a(11) from Amiram Eldar, Sep 02 2022

A307820 The number of infinitary abundant numbers below 10^n.

Original entry on oeis.org

0, 12, 114, 1270, 12518, 125634, 1257749, 12570993, 125716733, 1256921422, 12570417639
Offset: 1

Views

Author

Amiram Eldar, Apr 30 2019

Keywords

Examples

			Below 10^2 there are 12 infinitary abundant numbers, 24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, and 96, thus a(2) = 12.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{ b = IntegerDigits[e, 2]}, m=Length[b]; Product[If[b[[j]] > 0, 1+p^(2^(m-j)), 1], {j, 1, m}]]; isigma[1]=1; isigma[n_] := Times @@ fun @@@ FactorInteger[n];  c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ isigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq

Formula

Conjecture: Lim_{n->oo} a(n)/10^n = 0.125... is the density of infinitary abundant numbers.

Extensions

a(11) from Amiram Eldar, Sep 09 2022

A322287 The number of odd abundant numbers below 10^n.

Original entry on oeis.org

0, 0, 1, 23, 210, 1996, 20661, 205366, 2048662, 20502004, 204951472
Offset: 1

Views

Author

Amiram Eldar, Aug 28 2019

Keywords

Comments

Anderson proved that the density of odd deficient numbers is at least (48 - 3*Pi^2)/(32 - Pi^2) ~ 0.831...
Kobayashi et al. proved that the density of odd abundant numbers is between 0.002042 and 0.002071.

Examples

			945 is the only odd abundant number below 10^3, thus a(3) = 1.
		

Crossrefs

Programs

  • Mathematica
    abQ[n_] := DivisorSigma[1, n] > 2 n; c = 0; k = 1; s = {}; Do[While[k < 10^n, If[abQ[k], c++]; k += 2]; AppendTo[s, c], {n, 1, 5}]; s

Formula

Lim_{n->oo} a(n)/10^n = 0.0020... is the density of odd abundant numbers.

A308054 The number of coreful abundant numbers (A308053) below 10^n.

Original entry on oeis.org

0, 1, 24, 259, 2614, 26222, 262220, 2622178, 26221610, 262215860, 2622158194
Offset: 1

Views

Author

Amiram Eldar, May 10 2019

Keywords

Examples

			Below 10^2 there is only one coreful abundant number, 72, hence a(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1)-1; csigma[1]=1; csigma[n_] := Times @@ (f @@@ FactorInteger[n]); cpQ[n_] := csigma[n] > 2*n; s={0}; c=0; p=100; Do[If[k==p, AppendTo[s, c]; p*=10]; If[cpQ[k], c++], {k, 1, 1000001}]; s

Formula

a(n) ~ c * 10^n, where c = 0.0262215... is the asymptotic density of the coreful abundant numbers (see A308053). [Updated by Amiram Eldar, Sep 02 2022]

Extensions

a(11) from Amiram Eldar, Sep 02 2022
Showing 1-5 of 5 results.