A307834 Counterclockwise square spiral constructed by greedy algorithm such that the sum of the values of any two vertically or horizontally adjacent cells is unique.
0, 0, 1, 2, 2, 5, 1, 8, 10, 1, 12, 13, 2, 15, 17, 18, 3, 20, 19, 25, 2, 27, 22, 21, 32, 2, 35, 26, 28, 38, 4, 43, 31, 31, 32, 48, 4, 52, 37, 39, 34, 58, 6, 63, 40, 46, 49, 39, 70, 5, 76, 42, 56, 51, 45, 80, 5, 86, 44, 62, 66, 67, 46, 96, 5, 100, 50, 71, 72, 76
Offset: 0
Examples
The spiral begins: 8--158---69--111---91---95---93--110---61--147----6 | | 164 5---96---46---67---66---62---44---86----5 140 | | | | 67 100 4---48---32---31---31---43----4 80 64 | | | | | | 123 50 52 3---18---17---15----2 38 45 96 | | | | | | | | 97 71 37 20 2----2----1 13 28 51 88 | | | | | | | | | | 102 72 39 19 5 0----0 12 26 56 82 | | | | | | | | | 99 76 34 25 1----8---10----1 35 42 94 | | | | | | | 123 56 58 2---27---22---21---32----2 76 55 | | | | | 71 106 6---63---40---46---49---39---70----5 130 | | | 172 9--110---54---80---76---75---84---56--122----7 | 10--182---73--133--109--117--120--112--141---76--193
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10200 (-50 <= x <= 50 and -50 <= y <= 50)
- Peter Kagey and Rémy Sigrist, Colored representation of z(2*k)/abs(z(2*k))*a(2*k) for k = 1..501000 (where z(n) = A174344(n) + i*A274923(n) and the hue is function of k)
- Peter Kagey and Rémy Sigrist, Colored representation of z(2*k-1)/abs(z(2*k-1))*a(2*k-1) for k = 1..501000 (where z(n) = A174344(n) + i*A274923(n) and the hue is function of k)
- Rémy Sigrist, Colored illustration of the sequence (with cells (x,y) such that -500 <= x <= 500 and -500 <= y <= 500)
- Rémy Sigrist, Colored illustration of the sequence in function of the parities of x and y
- Rémy Sigrist, PARI program for A307834
Programs
-
PARI
See Links section.
Comments