cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307848 The number of exponential infinitary divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 01 2019

Keywords

Comments

The exponential infinitary divisors of Product p(i)^r(i) are all the numbers of the form Product p(i)^s(i) where s(i) if an infinitary divisor of r(i) for all i.
Differs from A278908 at n = 256, 768, 1280, 1792, 2304, 2816, ...
Differs from A323308 at n = 64, 192, 256, 320, 448, 576, 704, ...

Crossrefs

Programs

  • Mathematica
    di[1] = 1; di[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]&  /@ FactorInteger[n][[All, 2]] ]; fun[p_,e_] := di[e]; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100] (* after Jean-François Alcover at A037445 *)

Formula

Multiplicative with a(p^e) = A037445(e).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.5482125828..., where d(k) = A037445(k). - Amiram Eldar, Nov 08 2020